Employing Software for Efficient Retrieval of Reliability Data

David Brown, Robert Saethre, and Mark Crofford

Research Accelerator Division/Spallation Neutron Source

Reliability in the Real world

How Achieving World-Class Reliability Can Appear

More Real Depiction (Delicate Dance)

The process generally benefits some more than others

How Reliability is achieved

- Diligent, system-specific characterization and re-characterization
 - Constant monitoring
 - Gathering data
- Understand Failure Mechanisms and Failure Rates to proactively schedule Preventative Maintenance
- Understanding the interdependence of one sub-system to another
- Intelligent Data Logging facilitates in-depth analysis in support of the aforementioned bullet points

Why Intelligent Data Logging?

- Automation is possible
- Data collection is consistent
- Can be adapted to similar systems quickly
- Type of data and data storage allows for easy software integration
- Examples
 - Dissolved Gas Analysis (DGA) Data Collection Software
 - Radio Frequency Quadrupole (RFQ) Field Flatness Measurement Tool

High Voltage Converter Modulator Nominal Setup CCL4

 Components of the High Voltage Converter Modulator (HVCM) produce the pulsed power needed to power the klystrons

SNS HVCM Setup (Cont.) Inside Modulator tank

Why D

 Analys materia accorc

Gases

- One e: Tube L
 - Impu
 - Acet
 - Suffi
 - Cata of the

Su

vn stages al insulating be scheduled

r for Drift

of the top cover 4 inches) Jowntime

Serveron Dissolved Gas Monitor

- Monitors 8 gas levels
- True Total Dissolved Combustible Gas (TDCG) output is available
 - $-\Sigma$ H₂, C₂H₂, C₂H₄, CO, CH₄, C₂H₆ in PPM
 - Each gas is measured at 100% of detected level.
- Total Hydrocarbons (THC) output is available
 - $-\Sigma CH_4$, C_2H_2 , C_2H_4 , C_2H_6 in PPM
 - Each gas is measured at 100% of detected level.
- Moisture-in-oil and Oil Temperature

Safety IEC 61010-1, IEC 61010-2-81 UL 61010-1 (2nd Edition), UL 60950-1 Clause 6.4 CSA-C22.2 No. 61010-1-04

Installation

- The modulator for Coupled Cavity Linac section 4 was selected as first deployment
- Data recorded every 4 hours
- Modified oil pump assembly allows for system to monitor oil

Collecting the Data (Manual Way)

- Proprietary data collection stores data from DGA in Microsoft SQL database
- Manufacturer software can query database and display results
 - Calculations are performed
 - Charts and Graphs are automatically generated
 - Not very portable and not designed for monitoring multi-system deployment
 - No easily read log file of which to speak
- Engineer was manually copying data and pasting into a spreadsheet
 - Desired calculations, charts, and graphs were recreated in Excel
 - Involved logging into two different servers every day (about an hour each import)
 - Collaboration not easy

Collecting Data (New Way)

- Proprietary system still stores data in Microsoft SQL database
- Using Virtual Basic Scripting
 - Grab data and import them into a *.csv file
 - Update master spreadsheet with calculations and graphs
 - Employing formulae and filters to hide cells with bogus data
 - Publish/Update *.html page which can be accessed by anyone within defined group at any time
 - All are updated every morning before 0800
- Result is consistent, reliable, and portable data collection which can be accessed without logins and without copying data from database to spreadsheet
- Excel spreadsheet maintenance is required

Filtered Data in Actual File

	A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0
1	Local Time 🛛 📝	Sample Numbe	Sample Time	H2 - Hydrc	02 - Oxyge	CH4 - Metl	CO - Carbo	CO2 - Cark	C2H6 - Eth	C2H4- Eth	C2H2 - Ace	TDCG	THC	Load Guid A	۵mbient TAu»
4534	4/15/15 11:00	4473	4/15/2015 16:00	0	6614.4	0	97	889	83	6.9	0	186.9	89.9	0	23.44
4535	4/15/15 15:00	4474	4/15/2015 20:00	0	6547.5	0	96.5	900.6	82.9	6.4	0	185.8	89.3	0	23.31
4536	4/15/15 19:00	4475	4/16/2015 0:00	0	6777.2	0	95.7	913	81.2	6.1	0	183	87.3	0	23
4537	4/15/15 23:00	4476	4/16/2015 4:00	0	7230.7	0	92.8	923.4	82.4	5.6	1.5	182.3	89.5	0	23.13
4538	4/16/15 3:00	4477	4/16/2015 8:00	0	7899.7	0	88.5	935.1	79.8	6	0	174.3	85.8	0	23.25
4539	4/16/15 7:00	4478	4/16/2015 12:00	0	8270	0	86.9	929.6	81.9	6.1	0	174.9	88	0	23.13
4540	4/16/15 11:00	4479	4/16/2015 16:00	0	8081.4	0	86.9	938.1	82.5	6.3	1.6	177.3	90.4	0	23.19
4541	4/16/15 15:00	4480	4/16/2015 20:00	0	8103.1	0	87.4	946.7	79.3	7.3	0	174	86.6	0	23.13
4542	4/16/15 19:00	4481	4/17/2015 0:00	0	8384.2	0	84.9	956.7	80.6	6.3	0	171.8	86.9	0	23.19
4543	4/16/15 23:00	4482	4/17/2015 4:00	0	9486.7	0	80.7	969	79.4	6	0	166.1	85.4	0	23.63
4544	4/17/15 3:00	4483	4/17/2015 8:00	0	9148.3	0	81.4	969.1	80	5.8	0	167.2	85.8	0	23.88
4545	4/17/15 7:00	4484	4/17/2015 12:00	0	9144.5	0	80.2	980.1	79.9	5.5	1	166.6	86.4	0	23.56
4546	4/17/15 11:00	4485	4/17/2015 16:00	0	9400.6	0	79.1	989.7	77.2	7.3	0	163.6	84.5	0	23.25
4547	4/17/15 15:00	4486	4/17/2015 20:00	0	10602.4	0	76.2	1003.8	80.2	5.2	0	161.6	85.4	0	23.25
4548	4/17/15 19:00	4487	4/18/2015 0:00	0	10302.2	0	75.6	1001.6	78.7	5.3	0	159.6	84	0	23.19
4549	4/17/15 23:00	4488	4/18/2015 4:00	0	10546.7	0	72.6	1003.3	77	4.9	0	154.5	81.9	0	23.25
4550	4/18/15 3:00	4489	4/18/2015 8:00	0	10870.5	0	70.2	1008.8	76.7	6.4	0	153.3	83.1	0	23.31
4551	4/18/15 7:00	4490	4/18/2015 12:00	0	12001.2	0	70	1023.9	75.8	6.3	1.3	153.4	83.4	0	23.31
4552	4/18/15 11:00	4491	4/18/2015 16:00	0	0	0	0	0	0	0	0	0	0	0	23.38
4553	4/18/15 15:00	4492	4/18/2015 20:00	9.7	1596.8	0	126.1	920.6	102.4	8.2	0	246.4	110.6	0	23.63
4554	4/18/15 19:00	4493	4/19/2015 0:00	9.1	1435.1	0	129.8	923.7	106	9.3	0	254.2	115.3	0	23.63
4555	4/18/15 23:00	4494	4/19/2015 4:00	10	1518.4	0	133	892.4	102.5	8.9	0	254.4	111.4	0	23.25
4556	4/19/15 3:00	4495	4/19/2015 8:00	8.1	1433.5	0	128.6	919.1	106.1	9	0	251.8	115.1	0	23.75
4557	4/19/15 7:00	4496	4/19/2015 12:00	9.6	1428.1	0	129.1	924.6	105.5	9.7	1.2	255.1	116.4	0	23.75
4558	4/19/15 11:00	4497	4/19/2015 16:00	9.1	1399.5	0	125.6	924.9	108.5	10	1.7	254.9	120.2	0	23.75
4559	4/19/15 15:00	4498	4/19/2015 20:00	7.8	1349.8	0	123	901.7	107.4	9.9	0	248.1	117.3	0	23.88
4560	4/19/15 19:00	4499	4/20/2015 0:00	9.7	1434.3	0	132	927.7	112.5	10.1	0	264.3	122.6	0	23.81
4561	4/19/15 23:00	4500	4/20/2015 4:00	9.4	1419.4	0	130.7	923.9	112.2	11.4	0	263.7	123.6	0	23.81
4562	4/20/15 3:00	4501	4/20/2015 8:00	9	1432.6	0	132.5	925.4	114	9.8	0	265.3	123.8	0	23.75
4563	4/20/15 7:00	4502	4/20/2015 12:00	10.2	1431.4	0	132.6	922.9	113.3	9.3	0	265.4	122.6	0	23.81
4564	4/20/15 11:00	4503	4/20/2015 16:00	10	1424.2	0	131.4	925.3	113.6	9.7	0	264.7	123.3	0	23.81
4565	4/20/15 15:00	4504	4/20/2015 20:00	8.3	1399	0	128.3	926.6	117.9	10.9	0	265.4	128.8	0	23.81
4566	4/20/15 19:00	4505	4/21/2015 0:00	6.5	1355.9	0	124.9	904.6	115.1	10.6	1.7	258.8	127.4	0	23.69
4567	4/20/15 23:00	4506	4/21/2015 4:00	8.1	1371.7	0	125.8	918	118.4	10.4	0	262.7	128.8	0	23.75
4568	4/21/15 3:00	4507	4/21/2015 8:00	7.7	1339.9	0	124.2	899.2	115	10	0	256.9	125	0	23.75

Excel Screenshots

13		are probat	oly present	:. Proceed to	o 6.5.1 or 6.	5.2.													
14	0)																	
15		Condition	4: TDCG ex	ceedingthi	s value ind	icates exce	essive deco	mposition	. Continued	operation									
16		could resu	lt in failure	e of the tran	sformer. P	roceed im	mediately	and with c	aution per F	igure 2 Step 3 an	d 6.5.1 or 6.5.	.2.							
17		Hydrogen	Methane	Acetylene	Ethylene	Ethane	C Monoxia	le	C Dioxide										
18	Latest Data	H2	CH4	C2H2	C2H4	C2H6	со	TDCG	CO2						С	ritical G	iases		
19	4507	7.7	0	0	10	115	124.2	256.9	899.2	10			100%						
20	4/21/15 8:00	3%	0%	0%	4%	45%	48%						90%						
21	0	Duval %	0%	0%	100%								80%						
22										R1	0		70%						
23	Condition 1	100	120	1	50	65	350	720	2500	R2	0		60%						
24	Condition 2	700	400	10	100	100	570	1920	4000	R3	#DIV/0!		50%						
25	Condition 3	1800	1000	35	200	150	1400	4630	10000	R4	#DIV/0!		40%						_
26	Condition 4	1800	1000	35	200	150	1400	4630	10000	R5	0.086957	,	30%					_	
27										Rogers I	Ratios		20%						
28										Low ener	gy PD	NO	10%						
29										Hi energy	PD	NO	0%						
30										Sparking	low enegy	NO		H2	CH4	C2H2	C2H4	C2H6	co
31										Sparking	high energy	NO							
32										Thermal (ellulose	NO							
33										Thermal 1	50-300	NO							
34										Thermal	300-700	NO							
35										Thermal 3	•700	NO							
36																			
37																			

Continuous Data Monitoring Available via Web Browser

National Laboratory

Example of DGA Capturing Problem

National Laboratory

15 Quality of Science_1400

Radio Frequency Quadrupole (RFQ) Field Flatness

- At the SNS, our RFQ has experienced three detuning instances coming out of maintenance periods
 - All instances required retuning the cavity to operate
 - Downtime for retuning an RF cavity can measure on the order of days
- Subsequent measurements revealed significant deviation from documented field values
- An effort was initiated to characterize the RFQ field flatness under nominal operating conditions for a baseline to compare against when RFQ field and resonance error started to move

Collecting Data

- Combined use of Engineering, Physics, and Industrial Controls System (EPICS) database, Extensible Display Manager (EDM), and perl script does all the work
 - EPICS is used to control the Process Variables (PVs) needed to change the multiplexer inputs
 - EPICS also monitors readback PVs and copies readbacks into placeholder PVs
 - EDM is a Graphical User Interface (GUI) which allows the user to see the progress of the database in collecting the data and change certain variables (frequency of collection, offset values, etc.)
 - Perl is employed to grab data and append a running *.csv file which can be imported into Excel at a later date
 - *.csv file is used because appending an Excel file programmatically in Perl is not trivial
 - -*.csv is text based file which can easily be appended and can be imported into Excel easily

RFQ Field Flatness Measurement Results

18 Q

_				1. 6. 66		۱. ۱			archi	ive.csv (read-or	nly) - LibreO	ffice Calc (on io	s-srv-softioc3	a)		- /	• ×
	/ade/epics/supTop/operations/opi/rfqffm.edl _ 🗆 🗙				<u>F</u> ile <u>E</u> dit <u>V</u> iew Insert Format <u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> elp												
	F	lag = 0		Archi	ived Data (CSV)	- T		PDF	8	nec 😼 - 🕹 🖶	∎ † • j		1 iu in 💣	° 🗾 🔶 🖬 🖬			
FP #		Raw	Offset	Corrected	Current State	A1	<u> </u>	hi I		nestamp							
1	Mux 1, CH01	-25.88	47.00	21.12	Idle	6190	A	B	C	D	E	F	G	H	0.241052	J	K 🗖
3	Muy 1 CH02	27 73	45.50	17 77		6190	04/16/15 23:01:42	31	-26.5975	16.7525	600.471	55.8092	0.983210	15.8596	0.341955	50	
	mux 1, onoz	-21.13	10.00	1/.//	REQUK	6191	04/16/15 23:01:43	33	-27.1306	18.0594	604.849	58.2549	0.985312	15.8596	0.341841	50	
17	Mux 1, CH03	-24.28	43.66	19.38		6193	04/16/15 23:01:44	35	-45.5449	31.0551	606.609	58.2482	0.989816	15.8596	0.34201	50	
5	Muy 1 CH04	22 60	45.38	21 60		6194	04/16/15 23:01:44	36	-48.8222	-5.74219	607.314	57.2484	0.991624	15.8596	0.341894	50	
	mux ±, ono-	-23.03	10.00	21.03	MPS OK	6196	04/18/15 09:32:20	1	-25.6504	21.3496	599.07	42.5498	0.986447	14.2161	0.341259	50	
6	Mux 1, CH05	-25.16	45.37	20.21		6197	04/18/15 09:32:20	3	-26.9941	18.5059	599.089	42.8508	0.986006	14.2161	0.342142	50	
7	Muy 1 CH06	25 22	45.20	10 07		6199	04/18/15 09:32:21	5	-29.516	15.864	604.291	43.3445	0.985829	13.1431	0.342171	50	
	mux 1, onoo	-20.00	40.20	19.07	MUX CH	6200	04/18/15 09:32:22	6	-26.0582	19.3118	596.003	40.9896	0.990024	13.1431	0.342171	50	
8	Mux 1, CH07	-25.01	45.30	20.29	MUV 1 A	6202	04/18/15 09:32:22	8	-24.5393	20.5641	597.86	40.2103	0.986401	13.1431	0.342258	50	
12	Muy 1 CH08	24 21	43.26	10 05	MOXIO	6203	04/18/15 09:32:23	12	-24.1177	19.1423	593.458	40.2103	0.986401	13.1431	0.341287	50	
12	MUX 1, CHUB	-24.31	40.20	10.95	MUX 2 0	6204	04/18/15 09:32:23	10	-23.3438 -23.5044	19.7762 21.6856	591.706 591.007	40.8211 38.3269	0.990253	13.1431 13.1431	0.341287	50	
10	Mux 1, CH09	-23.31	43.12	19.81		6206	04/18/15 09:32:24	13	-24.0257	21.1243	591.007	38.3269	0.992417	13.1431	0.340996	50	
11	Mund CUILO	00 74	45.19	0.1 45		6207	04/18/15 09:32:24	14	-24.5872	20.6128	590.727	38.3532	0.992417	13.1431	0.341904	50	
	MUX 1, CHIO	-23.74	40.10	21.43		6209	04/18/15 09:32:25	16	-27.6151	17.7549	588.534	36.6833	0.985079	13.1431	0.341028	50	
13	Mux 1, CH11	-24.22	45.15	20.93		6210	04/18/15 09:32:25	19	-27.2533	18.1267	588.534	36.6833	0.985459	13.1431	0.342188	50	
1.4	Num 1 OLINO	04 86	45.20	0.0.4.4		6212	04/18/15 09:32:26	22	-26.9198	18.4102	592.262	35.4915	0.989875	11.8906	0.341204	50	
14	MUX 1, CH12	-24.76	40.20	20.44		6213	04/18/15 09:32:26	23	-27.0772	18.0928	586.145	35.3142	0.987375	11.8906	0.341758	50	
15	Mux 2, CH01	-27.50	45.28	17.78		6215	04/18/15 09:32:27	26	-27.8807	17.4593	583.717	34.3423	0.986377	11.8906	0.341693	50	
1.0	N		45.27			6216	04/18/15 09:32:28	28	-26.9459	18.1941	587.802	35.4594	0.98173	11.8906	0.341693	50	
10	MUX 2, CHU2	-27.92	40.37	17.45		6217	04/18/15 09:32:28	30	-26.1421	16.7123	576.006	34.6971 34.9959	0.985074	11.8906	0.340859	50	
19	Mux 2, CH03	-27.45	45.38	17.93		6219	04/18/15 09:32:29	33	-27.0972	18.0928	576.006	34.9959	0.985074	11.8906	0.341059	50	
			45.00			6220	04/18/15 09:32:29	39	-26.6256	16.4744 30.8311	579.657 586.163	34.2182	0.985457	11.8906	0.341841	50	
20	Mux 2, CH04	-27.33	45.22	17.89		6222	04/18/15 09:32:30	36	-29.598	13.482	583.724	34.3195	0.985671	11.8906	0.341026	50	
22	Mux 2, CH05	-26.96	45.33	18.37		6223	04/18/15 09:32:30	37	-28.0832	15.1768	583.724	34.3195	0.98996	11.8906	0.342155	50	
		20100		10107		6225	04/20/15 13:16:25	3	-27.7253	17.7747	587.142	52.6738	0.966353	14.8134	0.335517	50	
23	Mux 2, CH06	-26.93	45.17	18.24		6226	04/20/15 13:16:26	17	-24.281	19.379 21.6875	579.092	53.5843	0.965338	14.8134	0.334169	50	
25	Mux 2, CH07	-28-26	45.49	17.23	Last Dataset	6228	04/20/15 13:16:26	6	-25.1583	20.2117	580.897	54.5703	0.966437	15.6737	0.335564	50	
		-20120	15.01	17123	Took at:	6229	04/20/15 13:16:27	7	-25.3253	19.8747	586.664	54.5703	0.966437	15.6737	0.334393	50	
26	Mux 2, CH08	-28.12	45.34	17.22	TOOK al.	6231	04/20/15 13:16:27	12	-24.3095	18.9505	579.819	55.683	0.970796	15.6737	0.334347	50	
28	Mux 2, CH09	-26-81	45.14	18.33	04/20/2015 13:16:25	6232	04/20/15 13:16:28	10	-23.3145	19.8055	579.819	54.3174	0.967111	15.6737	0.334347	50	
		-20101	45.00	10100		6234	04/20/15 13:16:29	13	-24.2213	20.9287	583.75	54.247	0.96564	15.6737	0.334272	50	
30	Mux 2, CH10	-26.35	45.33	18.98	Measurement	6235	04/20/15 13:16:29	14	-24.756	20.444	587.815	54.2188	0.969229	15.6737	0.335173	50	
31	Mux 2 CH11	-26.81	43.35	16 54	Setup	6237	04/20/15 13:16:29	16	-27.9177	17.4523	589.449	53.5518	0.970667	15.6737	0.334307	50	
	max 2, or all	-20:01		10.51	Disable	6238	04/20/15 13:16:30	19	-27.4468	17.9332	580.001	53.5518	0.971244	15.6737	0.335318	50	
33	Mux 2, CH12	-27.23	45.19	17.96	Enable	6239	04/20/15 13:16:31	20	-27.334 -26.9634	17.886	576.264	53.0163	0.967289	15.6737 15.4702	0.334283	50	
39	Mux 2, CH13	-27 02	43.10	16 08	Enable	6241	04/20/15 13:16:31	23	-26.9267	18.2433	581.165	51.5484	0.969257	15.4702	0.334198	50	
	INVE OTED	-27.02		10.00		6242	04/20/15 13:16:32	25 26	-28.2633 -28.1222	17.2267 17.2178	581.165 576.726	51.5484 52.2139	0.969257	15.4702 15.4702	0.334198	50 50	
35	Mux 2, CH14	-45.63	76.60	30.97	Frequency	6244	04/20/15 13:16:33	28	-26.8121	18.3279	574.96	49.8327	0.965395	15.4702	0.33406	50	
36	Mux 2 CH15	20 72	43.08	13 24	(Days)	6245	04/20/15 13:16:33	30 31	-26.3475 -26.8056	18.9825 16.5444	579.235 579.235	49.7629	0.964955	15.4702	0.335383	50 50	
	INGK 2, OT LU	-23.12		13.30	1 0000	6247	04/20/15 13:16:34	33	-27.2314	17.9586	580.954	48.0466	0.968953	15.4702	0.334013	50	
37	Mux 2, CH16	-27.15	43.26	16.11	1.0000	6248	04/20/15 13:16:34	39	-27.022	16.078	581.643	47.3767	0.962213	15.4702	0.335274	50	
						6250	04/20/15 12:16:25	26	20.7196	10.0614	531.010	47.0057	0.070115	15.4702	0.005060	50	=

How to Implement Your Own Solution

 Determine the right YOU HAVEN'T HEARD WHAT WE ALWAYS BUILD A L.COM THE PROBLEM THAT COULD THE PROBLEM IS YET; DATABASE. IS THAT WE - Database? HOW CAN YOU RECOMMEND \$ BE THE HAVE POOR AND WE'LL NEED BUILDING A DATABASE SLOGAN ON PROCESSES. - Script? COFFEE MUGS TO SOLVE IT ?? OUR MUGS! FOR THE PROJECT • What language? TEAM. – Where will the data Format of the file and

National Laboratory

- Software is being deployed more ubiquitously now than ever in the accelerator world for new and innovative tasks
- Benefits are numerous to using scripts and databases to help grab data in an orderly and consistent fashion
- Make sure the requirements are clearly laid out
- Be ready for customers to want more than requirements (scope creep)
- Understand that on-going maintenance will be required

That's All, Folks!

If everything is done right, reliability can be properly optimized without very much disruption to personnel time through the use of software data collection. In some ways, the goal is to make the transition to 100% reliability seem effortless; like turning on a light switch.

Why Dissolved Gas Analysis

- HVCM electric insulating material breaks down due to multiple causes (Cooper Industries FR3 Insulating Oil)
- Coronal discharge under abnormal conditions in the tank heats oil and generates gases starting around 150°C
 - H₂, CH₄, and C₂H₆ and eventually C₂H₄ are generated
 - There are well known "hot spots" that generate gases associated with the low temperature range inherent in the design.
- Quantity of C₂H₄ can indicate the temperature and intensity of the corona
- Acetylene (C₂H₂) is generated when the oil conducts sufficiently to allow arcs (causing a fault temperature of 700° C)

ational Laboratory

 CO and CO₂ can be released during electrical cellulose insulator degradation.

DTL 3 Aftermath Pictures

CAK RIDGE

Some Other Failures That the DGA Could Catch

CAK RIDGE

SNS Mercury Target background

- Experience with a total of 12 Mercury Targets at SNS
- Varying lifetimes which are still being investigated
 - Lifetimes range from 1 week to 8 months
 - Some of the lifetime constraints are self-imposed as Preventative Maintenance
 - Why such a large discrepancy is still under investigation
 - Plans for improvement and plans for administrative/operational changes are underway

Target Data Retrieval Tool

- Developed to assist Engineering staff in gathering readings from the Target vessel
 - Pressure
 - Temperature
 - Flow
- Data is used to perform post mortem on failed Targets
 - Attempt is to find some diagnostic that is a direct (or indirect) prediction of failure
 - Downtime incurred from Target failure is anywhere between 7-14 days for changeout
- Data is archived and is accessible through many avenues

ARTTY (Archive Retrieval Tool To You)

- Using Perl and the Graphical Tool Kit an archive retrieval tool was created to make customized searches of archived signals
- Satisfies the requirements of the engineer to pull archived data from a particular date range at a particular interval down to 1 second
- Stores results in a *.csv file format for later retrieval

File Help ARTTY Ver 1.0 Output Filename: test.csv Start Time: Year: 2013 Month: 10 Day: 01 Hour: 00 Sec: 00 End Time: Vear: 2013 Month: 10 Day: 02 Heur: 00 Sec: 00	Set Time
Start Time: Year: 2013 Month: 10 Day: 01 Hour: 00 Minute: 00 Sec: 00 End Time: Year: 2013 Month: 10 Day: 02 Hour: 00 Minute: 00 Sec: 00	Set Time
Year: 2013 Month: 10 Day: 01 Hour: 00 Minute: 00 Sec: 00 End Time:	Set Time
End Time:	Set Time
Voor: 2013 Month: 10 Day: 02 Hour: 00 Minuto: 00 Sec: 00	Set Time
real. [2010 Monul. 10 Day. [02 Hour. [00 Minute. [00 Sec. [00	Set fille
TGT_HG:Tnk_PY5161:P = 75290 Add PV Subtract PV C	Clear PVs
1 Weeks Get Results Kill	I Process

